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The combination of continuum many-body quantum physics and Monte Carlo methods provide a powerful
and well established approach to first principles calculations for large systems. Replacing the exact solution of
the problem with a statistical estimate requires a measure of the random error in the estimate for it to be useful.
Such a measure of confidence is usually provided by assuming the central limit theorem to hold true. In what
follows it is demonstrated that, for the most popular implementation of the variational Monte Carlo method, the
central limit theorem has limited validity, or is invalid and must be replaced by a generalized central limit
theorem. Estimates of the total energy and the variance of the local energy are examined in detail, and shown
to exhibit uncontrolled statistical errors through an explicit derivation of the distribution of the random error.
Several examples are given of estimated quantities for which the central limit theorem is not valid. The
approach used is generally applicable to characterizing the random error of estimates, and to quantum Monte
Carlo methods beyond variational Monte Carlo.
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Quantum Monte Carlo �QMC� provides a means of inte-
grating over the full 3N-dimensional coordinate space of a
many-body quantum system in a computationally tractable
manner while introducing a random error in the result of the
integration �1�. The character of this random error is of pri-
mary importance to the applicability of QMC, and in what
follows an understanding of the underlying statistics is
sought for the special case of variational Monte Carlo
�VMC�.

Within QMC, estimated expectation values have a random
distribution of possible values, hence it is necessary to know
the properties of this distribution in order to be satisfied that
the statistical error is sufficiently well controlled. Many strat-
egies �notably those involved in wave-function optimization
and total energy estimation� sample quantities that exhibit
singularities, and sample the singularities rarely. This is char-
acteristic of a Monte Carlo �MC� strategy that is unstable and
prone to abnormal statistical error due to outliers �2�.

In what follows the VMC method is analyzed in order to
obtain the statistical properties of the random error. Analytic
results are obtained and compared with the results of numeri-
cal calculations for an isolated all-electron carbon atom. The
analysis naturally divides into four sections. Section I pro-
vides a summary of the implementation of MC used within
VMC. The construction of estimated expectation value of an
operator or trial wave-function combination is described for
the “standard sampling” case �the most commonly used form
�1�� as a special case of a more general formulation. This
short section provides no new results, but introduces the no-
tation used throughout, and presents well established results
from a perspective appropriate to the following sections.

Section II provides a transformation of the
3N-dimensional statistical problem to an equivalent one-
dimensional problem. The purpose of this section is to pro-
vide a simple mathematical picture of the statistical process
that is entirely equivalent to the original 3N-dimensional ran-

dom sampling process. This is achieved by removing the
statistical freedom in the system that is redundant for a given
estimate. The principal result of this section is the derivation
of a general statistical property that arises for almost all of
the trial wave functions available for VMC calculations, and
that may not easily be prevented. This statistical property
dominates the behavior of errors in VMC estimates, and the
demonstration of its presence provides the starting point for
the derivation of the statistics of estimators.

In Sec. III the standard sampling formulation of VMC is
analyzed. The goal is to find the distribution of the random
error in statistical estimates of the total energy and the “vari-
ance,” for a finite but large number of samples. The principal
conclusion of this section is that the central limit theorem
�CLT� is not necessarily valid and, when it is valid, finite
sampling effects may be important even for a large sample
size. This is demonstrated analytically, in the form of new
expressions for the distribution of errors occurring for stan-
dard sampling estimates of the total energy and variance.
Numerical results for an isolated carbon atom provide an
example of this effect for a calculation employing an accu-
rate trial wave function.

In Sec. IV estimates of several other quantities relevant to
QMC are considered, and the invalidity of the CLT for these
estimates is described �when derived using the same method
as Sec. III�. This section directly relates to the infinite vari-
ance estimators that have previously been discussed in the
literature �3�.

Finally, we note that this is the first of two closely related
papers. It provides a general approach to rigorously deriving
the statistics of the random error that is an inherent part of
QMC methods, and uses this approach to obtain the statisti-
cal limitations of the simplest available sampling strategy.
The following paper �4� employs this new analysis of the
statistics of QMC in order to design sampling strategies that
are superior, in the sense that the normal distribution of ran-
dom errors can be reinstated for a given QMC estimate.*jrt32@cam.ac.uk
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I. STANDARD SAMPLING VARIATIONAL
MONTE CARLO

The basic equation by which MC methods provide a sta-
tistical estimate for an integral may be written as

1

r
�
n=1

r
f�Rn�
P�Rn�

= �
V

fdR + Wr, �1�

where P is the probability density function �PDF� of the
independent identically distributed �IID� 3N-dimensional
random vector Rn, and Wr is the random error in the esti-
mate.

Introducing some notation used throughout the paper, the
statistical estimate of a quantity f constructed using r
samples is denoted Ar�f�, hence Eq. �1� can be written as

Ar��
V

fdR� = E� f

P
;P� + Wr, �2�

where the left-hand side is the statistical estimate of the in-
tegral �the sample mean in Eq. �1��, and the right-hand side
can be interpreted as a sum of an expectation of a quantity
x= f / P sampled over the distribution with PDF P, and a
random error. Whether the estimate is useful depends on the
PDF of Wr, specifically how this distribution evolves as r
increases.

An expectation value of the quantum mechanical operator
ĝ and �unnormalized� wave function � is defined by

G =
E�GL�2/P;P�
E��2/P;P�

, �3�

where GL=�−1ĝ� is the “local value” of the operator or trial
wave-function combination. By definition, VMC provides a
MC estimate for this quantity, and since it is a quotient of
two expectations it is more complex to estimate than a single
integral.

Standard sampling is the most common and straightfor-
ward choice, for which samples are distributed as P�R�
=��2, resulting in the simple form

Ar�G� = E�GL;��2� + Yr =
1

r
�
n=1

r

GL�Rn�, P�R� = ��2,

�4�

where � need not be known since it is not required to gen-
erate samples distributed as P�R� �1�. This simple form
arises from choosing P such that the normalization integral
of Eq. �3� is sampled perfectly.

Within standard sampling it is usually assumed that the
CLT is valid, and that r is large enough for the asymptotic
limit to be reached to a required accuracy. If this is so, then
Yr is distributed normally with a mean of 0, a variance given
in terms of the sample variance

Var†Ar�G�‡ =
1

r
Ar†Var�GL�Rn��‡ , �5�

and a confidence range for an estimated value can be ob-
tained via the error function.

Two issues concerning the nature of the random error
naturally suggest themselves. The use of the CLT to provide
a confidence interval for the estimate implicitly assumes that
the large r limit has been reached. Whether this is the case
for finite r is a nontrivial question �5�. The second issue is
the validity of the CLT. Since this theorem is applicable to a
limited class of distributions that may or may not include the
distribution of samples within VMC �or other QMC meth-
ods� this is also a nontrivial question.

It is useful at this point to introduce some further defini-
tions and notation. An estimate is a random variable, and
random variables are denoted by a sans serif font throughout.
A particular sample value of an estimate is referred to as a
sample estimate, and estimates are usually constructed from
sums of random variables. The PDF of the estimate con-
structed from r random variables is denoted Pr�x�, and de-
fined by

Prob†a � Ar�G� � b‡ = �
a

b

Pr�x�dx , �6�

and an estimate is unbiased if it has a mean for a given r that
is equal to its true value. For the estimate to be useful the
PDF of the error, Yr, must possess certain properties. It
would be desirable for this PDF to approach a Dirac delta
function for increasing r, and for some information to be
available on the form of the PDF for finite r. In addition an
estimatable confidence range for finite r is desirable, and
zero mean value for Yr for finite r.

II. GENERAL ASYMPTOTIC FORM FOR THE
DISTRIBUTION OF LOCAL ENERGIES

For the standard implementation of VMC summarized in
the previous section, the basic random variable is the
3N-dimensional position vector of all the particles within the
system, R. This is a “fundamental” random variable in the
sense that QMC is normally implemented as a random walk
in the multidimensional space R. However, this random vari-
able contains far more information than is required for many
purposes. An analysis is given here for the expectation value
of quantities that may be expressed in terms of the local

energy, EL=�−1Ĥ�. Note that this is a general procedure, and
is applicable to estimates of any operator by defining a local
field variable �scalar, vector, or higher order� to remove
the redundant statistical freedom present in the full
3N-dimensional space, providing a more concise representa-
tion.

The expectation of a function of the local energy EL is
defined as

	�
f�Ĥ�
��
	�
��

= E�f ;��2� �7�

=� P�2�R�f�EL�dR , �8�

and the standard sampling MC estimate of this is constructed
by sampling the 3N-dimensional coordinate vector over the
“seed” PDF P�2�R�=��2.
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Integrating over a hypersurface of constant local energy
removes redundant statistical degrees of freedom leaving the
field variable EL�R� as the random variable. The expectation
is then given by

E�f ;P�2� =� P�2�E�f�E�dE , �9�

with the seed PDF of the local energy given by

P�2�E� = �
�

P�R�

�REL


d3N−1R , �10�

where � is a surface of constant EL, and �REL is the gradient
of the local energy in 3N-dimensional space. The interpreta-
tion of this surface integral is straightforward, provided that
disconnected surfaces and nonsmoothness in the hypersur-
face are dealt with as a sum of separate �and sometimes
connected� surface integrals. Equation �10� simplifies the in-
terpretation of general statistical properties considerably.
Analytic properties of the seed distribution may be derived

that are general to the �Ĥ ,�� combinations used for VMC.
In what follows we limit ourselves to the case of electrons

in the potential of fixed atomic nuclei and Coulomb interac-
tions, giving a local energy in 3N-dimensional space of the
form

EL�R� = −
1

2

�R
2 �

�
+ Vee�R� + Vext�R� = TL + VL, �11�

where Vee�R� is the sum of two-body potentials �the
electron-electron Coulomb interaction�, and Vext�R� is the
sum of one-body potentials �the electron-nucleus Coulomb
interaction�. TL is the local kinetic energy, and all other terms
are contained in VL, the local potential energy. Singularities
will occur for a general �, and the expression above naturally
suggests classifying these into four different types. Each has
a characteristic influence on the asymptotic behavior of
P�2�E�, and an analysis of this relationship is given below.

A. Type 1: Electron-nucleus coalescence

Type 1 singularities are those resulting from any electron
coordinate ri approaching a singularity in the one-body ex-
ternal potential Vext, such as the −Z /r behavior of an atomic
nucleus. This occurs on a 3N−3-dimensional hypersurface.

For a particular electron of coordinate r1 approaching a
nucleus, the trial wave function can be expanded in spherical
coordinates to give

��r1� = a0�R3N−3� + a1��,R3N−3�r1 + ¯ , �12�

where r1= �r1 ,�� and R3N−3 is the 3N−3-dimensional vector
of the rest of the coordinate space. If � does not possess
singularities, it must be possible to expand an��� as a closed
sum of spherical harmonics Ylm��� with l�n. Similarly, for
� to be continuous up to order n, the coefficient an��� must
contain only odd or even l spherical harmonics in its expan-
sion for odd or even n.

For a trial wave function that is smooth at r1=0 this re-
sults in a local energy of the form

EL�R� − E0 = −
Z

r1
+ b0�R3N−3� + ¯ . �13�

The absence of a r1
−2 term is a direct consequence of � being

continuous at r1=0, and the r1
−1 term is entirely due to the

presence of the nucleus potential and the derivative of �
being continuous at r1=0. Figure 1�a� shows a two-
dimensional �2D� cut through the three-dimensional �3D�
space of r1, with R3N−3 held constant and the singularity due
to the nucleus at the center of the �asymptotically� spherical
constant energy surface.

Rearranging and repeated resubstitution provides the inte-
grand in Eq. �10�, and integrating over the constant energy
surface defined by the limit EL→ ±� �a “hypertube” which
is spherical in the space of r1, but has no simple form in the
3N−3 dimensions of R3N−3� gives the general form for the
tail �31�

P�2�E� = �0, E � E0

�E − E0�−4
e0 +
e1

�E − E0�
+ ¯ � , E 	 E0, �

�14�

where E�E0 �E	E0� denotes an asymptotic expansion that
converges for E greater �less� than some finite value. The
asymptotic behavior is one sided since the singularity is
negative, and the nodal surface does not need to be consid-
ered.

If the usual electron-nucleus Kato cusp condition �6,7� is
forced on � it introduces a discontinuity in the gradient at
r1=0 that exactly cancels the singular nucleus potential in
the local energy via the local kinetic energy, hence this type
of singularity can generally be removed. The cusp condition
also introduces an � dependence in the b0 term of the ex-
pansion, and hence a discontinuity in the local energy at the
nucleus �although it is of zero size for some wave functions�
�32�. For N electrons approaching the nucleus concurrently
the same cusp conditions are sufficient to prevent a singular-
ity, as discussed in the next section.

B. Type 2: Electron-electron coalescence

Type 2 singularities may occur for ri approaching r j �i
� j�, and result from a singularity in the two-body electron-

(c)

r12

nodal surface

r1 S⊥n̂

(a) (b)

FIG. 1. Constant energy surfaces in the large E limit. �a� shows
the surface in terms of the electron-nucleus vector as coalescence is
approached. The same geometry arises for electron-electron coales-
cence where the electrons possess different spin. �b� shows the sur-
face in terms of the electron-electron vector for electrons of like
spin for the case where no singularity is present in the local kinetic
energy. �c� shows the constant energy surface for singularities at the
nodal surface due to the local kinetic energy TL.
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electron interaction Vee. The coalescence of electrons of like
spin �indistinguishable� and unlike spin �distinguishable�
must be considered separately. By transforming to center-of-
mass coordinates for the two electrons with positions vectors
r1 ,r2 defined as r12=r1−r2 and s12= �r1+r2� /2 the same ap-
proach can be taken as for the electron-nucleus coalescence
surfaces. To simplify the notation the vector s12 is included
with the coordinates of the rest of the electrons in the vector
R3N−3.

For distinguishable �unlike spin� electrons the situation is
entirely analogous to the electron-nucleus case. The electron-
nucleus vector and interaction is replaced by the electron-
electron vector and interaction to give

P�2�E� = ��E − E0�−4
e0 +
e1

�E − E0�
+ ¯ � , E � E0

0, E 	 E0,
�
�15�

where E0 and the coefficients en are distinct from those in
Eq. �14�. �In order to keep the notation simple the same
symbols are used for distinct coefficients in all of the series
expansions contained within this section.� The asymptote is
one sided due to the repulsive electron-electron interaction,
and the nodal surface does not influence the result. Enforcing
the Kato cusp condition for unlike spins removes these tails
and introduces a discontinuity in the local energy in precisely
the same manner as for the electron-nucleus coalescence.

For indistinguishable �like spin� electrons the situation is
more complex. Figure 1�b� shows a 2D cut through the 3D
space of r12, with R3N−3 held constant and a constant energy
surface that is �asymptotically� spherical in the electron-
electron coordinate. The singularity due to electron-electron
coalescence is at the center of the sphere. Unlike the distin-
guishable electron case the coalescence point must fall on the
nodal surface, and the influence this has on � must be taken
into account.

Expanding a smooth antisymmetric trial wave function
about the coalescence point �on the nodal surface� gives

��r12� = a1��,R3N−3�r12 + a3��,R3N−3�r12
3 + ¯ , �16�

where interchange of electrons corresponds to inversion
about r12=0 so the coefficient an contains only odd l spheri-
cal harmonics and l�n. This provides a quadratic lowest
order variation in the probability density perpendicular to the
nodal surface, which results in a local energy of the form

EL�R� − E0 =
1

r12
+ b1��,R3N−3�r12 + ¯ , �17�

and an �asymptotically� spherical constant local energy sur-
face centered at the coalescence point. Note that the absence
of a r12

−2 term is a direct consequence of the gradient of �
being continuous at r12=0. The r12

−1 term is entirely due to the
Coulomb potential, together with � being odd on interchange
of electrons and possessing a continuous second derivative at
r12=0. Performing the hypertube integration then gives

P�2�E� = ��E − E0�−6
e0 +
e1

�E − E0�
+ ¯ � , E � E0

0, E 	 E0,
�
�18�

where, since the singularity is positive, the asymptotic be-
havior is one sided.

Enforcing the Kato cusp condition �6,7� for like spins
introduces a second-order radial term, with coefficient a2
=a1 /4. This provides a discontinuity in the second-order de-
rivatives of � at r12=0 that cancels the singular electron-
electron interaction, and so removes the tails due to the like
spin electron-electron coalescence. A further consequence is
a continuous local energy as the coalescence plane is
crossed, with a discontinuity in the gradient of the local en-
ergy.

So far only electron-nucleus and electron-electron coales-
cence has been considered. For the general case of many-
electron coalescence �some distinguishable, some not� at a
nucleus site, or at any point in space, and a smooth trial
function �, the local energy may be written in the form

EL�R� − E0 = �
i

Z

ri
+ �

i�j

1

rij
+ ¯ �19�

provided that the local kinetic energy is smooth. As dis-
cussed by Pack �6�, provided the trial wave function satisfies
the cusp conditions for each electron-electron and electron-
nucleus coalescence, then the Coulomb singularities will ex-
actly cancel with singularities in the local kinetic energy.
These conditions are easily satisfied for trial wave functions
that are a function of electron-nucleus, electron-electron, and
electron-electron-nucleus coordinates, but for higher-order
correlations internal coordinates must be considered explic-
itly.

Although the Kato cusp conditions remove the Coulomb
singularities from the local energy, they do not prevent the
occurrence of discontinuities on the same hypersurface of
electron-nucleus and electron-electron coalescence. Further
cusp conditions that remove these discontinuities may be ob-
tained directly from the local energy expansions given
above.

C. Type 3: Nodal surface

The third type of singularity �and associated tails in the
seed distribution� occurs for almost all of the trial wave func-
tions used in QMC calculations, with the exception of some
few electron systems. Type 3 singularities are due to the
kinetic energy only, and occur at the nodal surface due to the
presence of � in the denominator of the expression for the
local kinetic energy. There is no equivalent to the previous
cusp conditions that can easily be enforced on � to prevent
these type 3 singularities occurring, and they are of a funda-
mentally different nature.

Proceeding in a similar manner to the previous two cases,
the trial wave function is expanded about the singular sur-
face, in this case the 3N−1-dimensional nodal surface. This
expansion is then used to provide a constant local energy
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hypersurface, over which an integral is performed to obtain
the PDF in energy space.

Figure 1�c� shows a 2D cut through the 3N-dimensional
space that includes the nodal surface, and a constant local
energy surface at a perpendicular distance S� from the nodal
surface. Expressing the vector of a point on the constant
energy surface as

R = X + S�n̂ , �20�

where X is a point on the nodal surface, and n̂�X�=�REL̂
X is
the normalized gradient at X, gives

��R� = a1�X�S� + a2�X�S�
2 + ¯ , �21�

and

EL�R� − E0 = b−1�X�S�
−1 + b0�X� + b1�X�S� + ¯ . �22�

Employing these in Eq. �10� and integrating over the con-
stant energy surface defined by the limit EL→ ±� �the nodal
surface� gives the general form

P�2�E� = �E − E0�−4
e0 +
e1

�E − E0�
+ ¯ �, 
E
 � E0.

�23�

Equation �23� tells us that for a general trial wave function
and Hamiltonian the resulting “seed” probability distribution
in energy space has this asymptotic form for type 3 singu-
larities. This result is central to the rest of this paper.

A special case of this type of singularity arises for a trial
wave function where a nodal pocket is at the critical point of
appearing or disappearing, which may occur in the process
of varying a parametrized trial wave function in the search
for an optimum form. This occurs where a solution of the
equation �=0 disappears, or for a local maximum or mini-
mum of � crossing the nodal surface. At this critical point
�=0 defines a single point in 3N-dimensional space, and the
wave function may be expanded about this point using hy-
perspherical coordinates R= �R ,�� �with R the hyper-radius
and � the 3N−1 hyperangles� as

��R� = a2���R2 + a3���R3 + ¯ . �24�

The associated local energy then takes the form

EL�R,�� − E0 = b−2���R−2 + b−1���R−1 + b0��� + ¯

�25�

with the singular behavior arising via the local kinetic en-
ergy. Following the same approach as for type 1 and type 2
singularities, but integrating over the surface of the hyper-
sphere gives

P�2�E� =
1


E − E0
�3N+6�/2
e0 +
e1

�E − E0�
+ ¯ � , �26�

an asymptotic tail in the PDF that is one sided since the
constant energy surface exists only in the nodal pocket that is
not being created or annihilated. This gives a faster decay
than E−4 for N
1, and nodal pockets can only occur in the
ground state for N
2. Consequently, this effect is secondary
to the E−4 behavior arising from nodal surfaces that are not

being created or annihilated, and will only dominate if anni-
hilation of the nodal pocket results in no nodal surfaces any-
where in space. This can only occur if all fermions in the
system are distinguishable.

D. Type 4: Arbitrary bound trial wave functions

Singularities in the local energy may also occur if the
local energy approaches infinity as any or all electrons ap-
proach an infinite distance from the nuclei or each other. This
type of singularity is referred to as type 4, and its source may
be the local kinetic energy, the local potential energy, or
both, and can only occur for systems that do not extend over
all space.

For these finite systems a reasonable assumption about the
general form of a trial wave function used in QMC is that it
is a bound state of some “model” Hamiltonian �this encom-
passes the exact, HF, MCSCF, Kohn-Sham, Gaussian basis
wave functions, and many others, with or without a Jastrow
factor or backflow transformation�. Hence, for the types of
wave function that are used in QMC calculations, the
asymptotic behavior can be written as

��R� � 
R
�e−

R
�, �27�

where the parameters �, 
, and � depend on the type of trial
wave function.

Following the same approach as for type 1 and 2 singu-
larities, the influence on the asymptotic tails of the seed dis-
tribution can be determined by integrating over the constant
local energy surface. This tells us that for ��1 �e.g., a
Gaussian basis set� P�2 decays as an exponential function of
a power of E, whereas for 0���1 ��=1 is the correct
asymptotic form� P�2 is zero outside of an energy interval
�assuming that none of the other three types of singularity
are present�. The second case is preferable, but the former is
not significant as it can only result in the presence of expo-
nentially decaying tails in P�2. In what follows type 4 singu-
larities are irrelevant.

Type 3 tails occur for almost all many-body trial wave
functions, with some exceptions. First, it is possible for there
to be no nodal surface. This does not occur for systems con-
taining two or more indistinguishable fermions, and does oc-
cur if the trial wave function is a bosonic ground state. Sec-
ond, the nodal surfaces may be exactly known from
symmetry considerations, as discussed by Bajdich et al. �8�.
A third exception arises from considering an effective Hamil-
tonian for which the trial wave function is an exact solution.
This has a potential defined by

Vef f = Eef f +
1

2

�R
2 �

�
, �28�

where Eef f is arbitrary, but is usually chosen to be zero for a
completely ionized system. If Vef f can be shown to possess
no singularities at the nodal surface, then �R

2 �=0 at the
nodal surface and type 3 tails do not occur. An example is the
Slater determinant, as this is the exact solution for fermions
in a one-body potential �with no two-body or higher interac-
tions present in Vef f�. �Note that the available modifications
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of such “exact model” solutions, such as Jastrow factors,
result in a many-body Vef f that is singular at the nodal sur-
face.�

Removing type 3 singularities is a nontrivial problem
since it is necessary to ensure that TL remains finite over the
nodal surface apart from on the coalescence planes, where it
must possess a singularity that exactly cancels the electron-
electron Coulomb interaction. Type 3 tails are taken to be
unavoidable in practice.

In order to clarify when these singularities or tails occur it
is worth considering some examples. For an exact wave
function none of the singularity types occur. For a Hartree-
Fock or Kohn-Sham Slater determinant with no basis set
error only type 2 singularities occur, since the electron-
nucleus cusp conditions are satisfied, the asymptotic wave-
function behavior has the correct exponential form, and the
local kinetic energy is finite at the nodal surface. For a
Hartree-Fock or Kohn-Sham Slater determinant with a
Gaussian basis set, singularities of all four types occur, but
type 1 and 2 singularities can be expected to dominate.

Figure 2 shows a schematic of the form taken by the
singularities in the local energy as an electron passes through
the nucleus, through a coalescence plane, through a nodal
surface, and continues away from the nucleus, for the case
where all types of singularity are present. From this point on,
only the influence of type 3 singularities and the associated
symmetric tails in the seed distribution are considered, since
type 1 and type 2 behavior is easily and routinely removed,
and type 4 behavior does not affect the analysis that follows.
It is the presence of these “leptokurtotic” power law tails
�also known as “heavy tails” or “fat tails”� in the PDF of the
sampled energies that provides the starting point for an
analysis of random errors in the estimates of expectation val-
ues within VMC.

Before commencing, it is useful to explicitly show the
presence and magnitude of the type 3 singularities for a real
system, the isolated all-electron carbon atom. A numerical
multiconfiguration Hartree-Fock calculation was performed
to generate a multideterminant wave function consisting of
48 Slater determinants �corresponding to seven configuration

state functions �CSF�� using the ATSP2K code of Fischer et
al. �9�. Further correlation was introduced via an 83 param-
eter Jastrow factor �10�, and a 130 parameter backflow trans-
formation �11�. This 219 parameter trial wave function was
optimized using a standard variance minimization method
�12�, resulting in EVMC=−37.834 49�7� a.u., compared with
the “exact” �13� result of −37.8450 a.u. Of those trial wave
functions that can practically be constructed and used in
QMC this may be considered to be accurate, and reproduces
93.3% of the correlation energy at the VMC level.

As discussed above, only type 3 singularities contribute to
the asymptotic behavior of the seed distribution. Figure 3
shows an estimate of the seed PDF, P�2�E�, constructed by
taking 107 standard samples of the local energy, binning
these into intervals, and normalizing �14�. Also shown is a
simple analytic form

p�E� =
�2

�

�̂3

�̂4 + �E − Êtot�4
, �29�

and a normal distribution, both with a mean and variance of

Êtot and �̂2 whose values are obtained from the data using the
usual unbiased sample estimates.

It is apparent that the seed distribution P�2�E� is not well
described by a normal distribution. Considering that no fit-
ting procedure is employed �beyond matching the first two
moments of the model and sample distributions� it is some-
what surprising that the simple model distribution is so close
to the actual distribution. This is most clearly demonstrated
by comparing the number of sample points predicted in a

“tail region” defined by �E− Êtot��10�̂=2.25 a.u. The nu-
merical data has 2990 sample points in this region, p�E�
predicts 3481 points, and the normal distribution predicts
1.7�10−14 points.

An alternative measure is to assume the asymptote

r1

I II III

IV →

E
L
(r

1
,R

3
N
−

1
)

0

FIG. 2. Variation of the local energy in the presence of singu-
larities of all four types, with an electronic coordinate r1 passing
through singular hypersurfaces. I, II, III, and IV denote singularities
due to e-n interaction, e-e interaction, the nodal surface, and incor-
rect asymptotic behavior �shown here for the Gaussian case�, re-
spectively. Units are arbitrary.

(EL − µ)/σ

σ
̂ P
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FIG. 3. The seed probability density function estimated by a
histogram of r=107 sampled local energies �black�. These are re-
sults for an accurate all-electron carbon trial wave function, as de-
scribed in the text. Shown in gray is the model distribution of Eq.
�23� that reproduces the mean and variance of the samples, and the
dotted line is the normal distribution that reproduces the same mean
and variance.
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pasym�E� =
�2

�

�3

�̂ 
 �̂

E − Êtot
�4

�30�

to be dominant in the tail region, and to equate the sampled
and predicted number of outliers. This estimates the magni-
tude of the leptokurtotic tails to be �3=0.86 �in comparison
with �3=1 for the model distribution of Eq. �29��.

Figure 3 suggests that the local energy is not well sampled
close to the nodal surface, where the deviation from the
mean is greatest. Further suspicion that a more detailed
analysis is required arises when it is noted that third or
higher moments do not exist for this seed distribution, even
though a finite number of samples will provide an estimate
of these higher moments that converges to infinity as the
sample size is increased.

III. RANDOM ERROR IN VMC ESTIMATES

In the previous section no mention of MC methods has
been made. In this section the consequence of choosing the
standard sampling strategy in QMC is investigated. It has
been noted by previous authors that for many calculations
the distribution of the local energy is clearly not Gaussian,
for both VMC and DMC calculations �15–18�. Section II
shows that this is generally the case. In previous work it also
appears to be implicitly assumed that the form of the seed
distribution is irrelevant to the application of the CLT to infer
information on the random error of estimated quantities �1�.
In what follows, the influence of the leptokurtotic tails on the
validity of the CLT is examined in detail, and the distribution
of random error in VMC estimates is derived.

Numerical evidence for a valid CLT is at best limited, and
only weakly suggestive. For most applications of QMC only
single estimates are constructed, with an estimated random
error calculated using the CLT. Generally, no ensemble of
estimates is calculated to justify that this error is normal. The
best we can do is observe that for many published results the
estimated total energies and errors are consistent with exact
energies where these are known in that they are higher �to
within the statistical accuracy suggested by the CLT�. This
still leaves significant room for non-Gaussian error, espe-
cially for larger systems and estimates of quantities other
than the total energy.

Results for wave function optimization within VMC are
more strongly suggestive. The most stable implementation
possible for a stochastic minimization method would provide
a normal random error in the optimized functional. Instabil-
ity is commonly observed for many of the available imple-
mentations, particularly for a large number of particles or
where the nodal surface of the trial wave function is varied
�15,16�. This is consistent with the notion that the CLT may
not be valid for these implementations.

Possible distributions of error in estimates can be summa-
rized as follows. The catastrophic case would be for the law
of large numbers to be invalid, providing estimates that do
not statistically converge to an expectation as r approaches
infinity. Another possibility is that the central limit theorem
may not be valid, providing estimates that statistically con-
verge, but with a random error that is not normally distrib-

uted. A further possibility is that the CLT may be valid, but
that the deviation from the normal distribution for finite r is
unknown, so may be significant for accessible sample sizes.
A final, ideal case would be for the CLT to be valid, and for
the deviation from the normal distribution for finite r to be
known, and to be unimportant for accessible sample sizes.
The first and last of these are found not to occur, while the
other cases do �depending on what is being estimated�, as a
direct consequence of the presence of the leptokurtotic tails.

A. Total energy

As discussed in Sec. I, the unbiased estimate of the total
energy constructed from local energy values at r points
sampled from the P�2 distribution is given by

Ar�Etot� =
1

r
�
n=1

r

En, �31�

with �En� the independent identically distributed �IID� ran-
dom variables EL�R�. This �rescaled� sum of IID random
variables can be analyzed using the known properties of the
PDFs of each En to obtain the PDF of the estimate itself.

It is useful to introduce some supplementary random vari-
ables in order to keep the notation simple. Defining the mean
and variance of P�2 as E�EL� and �2 provides the transfor-
mation

Xn =
1

�
�En − E�EL�� , �32�

as long as the first two moments exist. This Xn has a PDF
p�x�, of mean and variance of 0 and 1, and a symmetric
asymptotic behavior �1 /x4. Two further random variables
are Sr, defined as the sum of r independent samples taken
from p�x�, and the normalized version of this sum,

Yr =
�X1 + ¯ + Xr�

�r
=

Sr

�r
. �33�

The transformation from Yr to Ar�Etot� is

Ar�Etot� =
�

�r
Yr + E�EL� , �34�

so that Yr is the random error in the estimate of the total
energy in units of � /�r.

The validity of the CLT for these sums of random vari-
ables is tested below, for the three most common forms of
the CLT available. These are considered in order of increas-
ing generality �in that they are valid for progressively larger
classes of PDFs� and decreasing knowledge of finite sam-
pling effects �in that limits on the deviation from normality
for finite r are progressively less well defined�.

The least general CLT is provided by the existence or not
of an Edgeworth series expansion �5�. Provided that all the
moments of p�x� exist, and that they satisfy Carleman’s con-
dition �5�, then the distribution of Yr for r samples Pr�y�, can
be uniquely defined by the infinite series
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Pr�y� =
1

�2�
e−y2/2
1 +

f3�y�
�r

+
f6�y�

r
+ ¯ � , �35�

where each fm�y� is a finite polynomial in y of order m, and
with coefficients that may be expressed in terms of the first m
moments of the seed distribution. If this expansion is valid,
Pr�y� converges to the normal distribution for increasing r,
and the expansion also provides a definite bound on the de-
viation of the distribution from normal for finite r—the de-
viation can be estimated if necessary, and scales as the
Gaussian function. For the seed distribution of local energies
P�2, the asymptotic behavior ensures that all moments higher
than second do not exist, hence this form of the CLT is
invalid.

A more general result is the Berry-Esseen theorem �5�,
which states that the inequality

��
−�

x

Pr�y� −
1

�2�
e−y2/2dy� �

C

�3�r
�

−�

�


y
3p�y�dy ,

�36�

is valid provided the third absolute moment on the right-hand
side is finite �C=0.7655 is the best value of C available
�19��. This proves that Pr�y� converges to the normal distri-
bution for increasing r, and also provides a bound on the
deviation of the distribution from normal for finite r. The
asymptotic behavior of the seed distribution ensures the non-
existence of the third absolute moment, hence this form of
the CLT is invalid for P�2.

The final candidate is Lindeberg’s theorem �5�. This is the
most general form of the CLT, and provides the weakest
bound on the deviation from normality for finite r. Provided
that

Max� 
��y�

1 + y2� � � , �37�

it follows that

lim
r→�

�
−�

x

Pr�y���y�dy =
1

�2�
�

−�

x

��y�e−y2/2dy , �38�

or that in the limit of r approaching infinity the probability of
the sum of random variables falling in a given interval �given
by ��y�=1� is equal to that of the normal distribution pro-
vided by the CLT, provided that the second moment of p�x�
exists. This provides confidence limits from the sample mean
and variance via the CLT for large r, but two points must be
borne in mind. First, for ��y� increasing faster than second
order �such as the definition of moments higher than second
order� the expectation is not defined, even in the limit of r
approaching infinity. Second, for finite r there is no limit to
the magnitude of any deviation from normal, or to how fast
these deviations decay with increasing r.

These theorems inform us that the random error in the
unbiased estimate of the total energy obeys the CLT, but no
information is available about the deviation of the distribu-
tion of errors from normal for finite r. This is unsatisfactory,
since only a finite number of samples will ever be available.

Using the asymptotic behavior derived in Sec. II does
allow us to extract information about the deviation from nor-
mal that appears in Pr�y�. In what follows this is achieved by
using the same strategy as the most frequently presented
derivation of the CLT �20�, but explicitly taking into account
the leptokurtotic tails.

Denoting the PDF of the sum Sr as Pr�sr� �distinct from
Pr�y� but related via a change of variables� and viewing this
sum as a random walk in one dimension leads immediately
to the iterative convolutions

Pr�sr� = p�xr� � Pr−1�sr−1� , �39�

starting from P1�s1�= p�x1�. In Fourier space this is simply a
product, and defining the Fourier transform as

p�k� = �
−�

�

p�x�e−ikxdx �40�

immediately gives

Pr�k� = er ln p�k�, �41�

with Pr�k� and p�k� the characteristic functions of Pr�sr� and
p�x�, respectively. Equation �41� reduces the problem to that
of finding the inverse Fourier transform of the rth power of
the Fourier transform of the seed distribution �with an appro-
priate transformation of the random variables�.

For a PDF to possess a smooth characteristic function �in
the sense that all derivatives exist at all points�, the PDF
must decay at least exponentially fast as 
x 
 →� �21�. If this
were the case, then a Taylor expansion would exist for
ln p�k� that is valid for all real k. For the distribution of local
energies, the PDF falls to zero algebraically slowly, which
implies the presence of poles in the complex plane for finite

x
, discontinuities in the Fourier transform at the origin, and
no Taylor series expansion about k=0 for ln p�k�.

The Fourier transform may be performed by contour in-
tegration in the complex plane, closing the contour in the
upper half plane for Re�k��0, and the lower half plane for
Re�k��0. This, in addition to the constraints on the residues
and the position of the poles that prevent any slower
asymptotic behavior, provides a general series expansion

ln p�k� = −
1

2
k2 +

�3

3�2

k
3 + �3�ik�3 + O�k4� . �42�

All of the coefficients in this expansion are completely un-
related to moments of the seed distribution, and for the
model distribution shown in Fig. 3, �3=1 and �3=0. Higher-
order discontinuities may also be present in this expansion,
as generally a 
x
−q term in the asymptotic behavior of a
function is accompanied by a 
k
q−1 term in its Fourier trans-
form due to the properties of bilateral Laplace transforms
�21�.

This series expansion provides the required expression for
Pr�k�,

J. R. TRAIL PHYSICAL REVIEW E 77, 016703 �2008�

016703-8



Pr�k� = exp�− r
1

2
k2 + r

�3

3�2

k
3 + r�3�ik�3 + O�k4�� .

�43�

Changing variables to w=�rk and y=sr /�r and performing
the inverse Fourier transform gives

Pr�y� =
1

2�
�

−�

�

eiwy−w2/2 exp� �3

3�2

1
�r


w
3 + �3
1
�r

�iw�3

+ O
w4

r
��dw , �44�

where the lowest-order terms that are independent of r have
been factored out. Expanding the exponential whose argu-
ment is a function of r−1 as an asymptotic series in r gives

Pr�y� = �0�y� +
�3

3�2

1
�r

�3�y� + �3
1
�r

�3�y� + ¯ , �45�

where �0�y� is the standard normal distribution,

�q�y� =
1

2�
�

−�

�


w
qeiwy−w2/2dw , �46�

and

�q�y� =
1

2�
�

−�

�

�iw�qeiwy−w2/2dw . �47�

Higher-order terms can be written in the same form, and will
have a prefactor proportional to r1−q/2. Note that �q and �q
are distinct only for odd q.

Since �0�y� is a Gaussian function, the CLT is valid, and
the PDF may be expressed as

Pr�y� =
1

�2�
�1 +

�3

�r

d3

dy3 + O
1

r
��e−y2/2

+ � �3

3�

1
�r

d3

dy3 + O
1

r
��D
 y

�2
� , �48�

where D�x� is the Dawson integral �21� defined by

D�x� = e−x2�
0

x

et2dx , �49�

and possessing finite derivatives of all orders, and a known
asymptotic expansion. Further terms can be included explic-
itly if required, as higher-order derivatives of the Gaussian
function and Dawson integral.

In a region close to the mean, Eq. �48� may be expanded
in the form

lim

y
→0

Pr�y� = � 1
�2�

+
1
�r

h1�y� + O
1

r
��e−y2/2, �50�

where h1 is an infinite series that converges over a finite
region surrounding the mean. This expansion differs from the
Edgeworth series in that it does not converge for all y.

Far from the mean, where the previous series expansion
does not converge, the asymptotic behavior takes the form

lim

y
→�

Pr�y� = ��2

�

�3

�r

1

y4 +
1
�r

1

y6h2
 1

y2� + O
1

r
�� , �51�

with h2�x� an infinite series that converges over a finite re-
gion surrounding x=0. This form arises because the second
sum in Eq. �48� dominates for large y �it is obtained from the
asymptotic form of the derivative of the Dawson integral�,
and is fundamentally different in character to the Gaussian
decay that would occur were an Edgeworth series to exist.

The model seed distribution introduced in the discussion
of the all-electron carbon VMC results of the previous sec-
tion corresponds to the special case �3=1 and h1=h2=0, and
is the simplest form that results in this “persistent leptokur-
totic” behavior for the distribution of total energy estimates.

These results allow some general observations about the
distribution of errors in total energy estimates. As expected,
the normal distribution emerges in the large r limit. How-
ever, for finite r the character of the deviation far from the
mean is dominated by E−4 tails. The magnitude of these tails,
�3, is not expressible in terms of moments of the samples,
but is required in order to decide whether these leptokurtotic
tails are statistically significant.

Figure 4 shows the distribution of errors �Pr of Eq. �48�
truncated to order 1 /r1/2�, for a range of �3 values and �3
=0 �a nonzero value would introduce some asymmetry close
to the mean�. A nonzero �3 causes a redistribution of prob-
ability in an inner region where the Gaussian contribution to
the density is dominant, with a net shift of probability to an
outer region where the Gaussian contribution is vanishingly
small and the leptokurtotic tails dominate.

A useful indicator of the impact of the leptokurtotic tails
on confidence limits can be extracted as follows. The devia-
tion from the mean �in units of standard error� at which the
leptokurtotic tail starts to dominate can be defined as the
intersection of the dominant parts of the asymptotic and
small y expansion of the distribution. This provides the equa-
tion

(Etot − µ)
√

r/σ

σ
/√ r

̂ P
r
(E

to
t)

λ3=10

λ3=1

λ3=0.1
-10 -5 0 5 10

10−6

10−3

100

FIG. 4. Probability density function for the random error in the
estimated total energy. Results shown are for a kernel estimate of
the PDF resulting from 104 estimates with r=103 for each estimate
�black�. Gray lines show the predicted distribution, including lep-
tokurtotic tails, for different �3 values. For comparison, the normal
distribution that emerges in the large r limit is also shown �dotted
line�.

HEAVY-TAILED RANDOM ERROR IN QUANTUM MONTE CARLO PHYSICAL REVIEW E 77, 016703 �2008�

016703-9



yc
2 = ln
 �r

4�3
2� + 4 ln yc

2, �52�

which may be solved numerically, and whose solution de-
pends weakly on r /�3

2 due to the logarithmic term. Specify-
ing extreme values of r�106 and �3�1 results in yc�5.2.
The value yc=4 is chosen to be representative as it defines
the 99.994% confidence interval for a Gaussian distribution.
Using this crossover point naturally defines a “Gaussian in-
terval” by 
y 
 �4, and a “leptokurtotic interval” by 
y 
 
4.
Table I shows the probabilities resulting from a seed distri-
bution with varying r /�3

2 values, where a typical value for
the carbon atom calculations of Sec. II is �r ,�3�= �104 ,1.0�
or r /�3

2=104.
It is apparent that the presence of the leptokurtotic tails

could introduce significant errors, since the confidence inter-
vals obtained by assuming that the error is normal are not
accurate if r /�3

2 is small enough. For the all-electron carbon
atom considered earlier, the normal interpretation appears to
be valid provided a confidence of less than 99.98% is re-
quired. For larger �3 the tails become more significant, with
outliers rapidly becoming more common—the probability of
an estimated total energy falling in the outlier region in-
creases by two orders of magnitude over the range of values
shown in the table.

A more direct interpretation of the random error in the
total energy can be obtained by constructing an estimate of
the associated PDF from the numerical samples. A kernel
estimate �14� was constructed from m=104 unbiased total
energy estimates, each from r=103 local energy samples us-
ing

Pr�E� =
1

mh � �
E − Ar�Etot�
h

� , �53�

where m is the number of estimates, h is the width parameter
chosen heuristically to provide the clearest plot, and the ker-
nel function � is chosen to be a centered top-hat function of
width 1.

This �biased� estimate of the PDF is also shown in Fig. 4.
The numerical data provides one sample estimate in the 
y 

�4 region, compared with a prediction of �3 estimates re-
sulting from the value of �3=1 estimated in Sec. II. A normal
distribution �obtained from sample mean and variance and
the CLT� predicts 0.6 estimates. This supports the validity of
the CLT confidence limits for these results.

To conclude, estimates of �3 and of the total energy PDF
both suggest that the leptokurtotic tails are present, but are
not statistically significant for total energy estimates and the
all-electron carbon atom considered. However, it must be
borne in mind that the estimated tail magnitude ��3� has
unknown bias, and the range of tail magnitudes for other
systems is completely unknown. It seems reasonable to ex-
pect a larger, less symmetric system, or a trial wave function
constructed from a finite basis, to provide stronger singulari-
ties and leptokurtotic tails than the accurate wave function
considered here. This implies that the degree of validity of a
CLT interpretation of confidence intervals must be justified
for each individual case, a difficult task given that no unbi-
ased estimate of �3 is available.

Were leptokurtotic tails to be absent, the evaluation of
sample moments would be enough to demonstrate that the
CLT interpretation was valid, and sample moments would
provide finite r corrections to the confidence interval. This is
not the case for finite �3 and some �necessarily biased� esti-
mate of its value must be obtained from the data.

B. Residual variance

Following the same approach as for the total energy, the
estimate of the “variance” of the local energy is considered.
Before analyzing the statistics of the standard unbiased esti-
mate for finite sample size it is useful to define this quantity
in terms of the underlying physics of the system, as opposed
to the distribution of random samples. Previous publications
�15,16,22� have used distinct definitions of the variance in-
terchangeably, and inconsistently, especially when consider-
ing different optimization and/or sampling strategies.

The residual associated with the Schrödinger equation for
the system of interest and a normalized trial wave function,

�̆=� / ���2dR�1/2, is defined as

� = �Ĥ − EG��̆ . �54�

The “residual variance principle” requires the minimization
of the integral of �2 over all space with respect to variations
in the wave function �23�. The parameter EG may be viewed
as a further variational parameter, giving the “residual vari-
ance”

V�2 = E��EL − Etot�2� , �55�

where Etot is the expectation value of the total energy of the
trial wave function as defined in the previous section. This
residual variance is zero when � is an eigenstate of the
Hamiltonian, and positive otherwise.

The standard unbiased estimate for this quantity, con-
structed with standard sampling and r samples in energy
space, is then given by

TABLE I. Probabilities of sample total energies in interior and
exterior regions for a range of values of r /�3

2. �3 values in the
second column are those corresponding to r=104. The range con-
sidered is arbitrary, and values that typically arise for different sys-
tems are unknown.

Probability �%�

r /�3
2 �3

a 
y 
 �4b 
y 
 
4c

� 0.0 99.994 0.006

106 0.1 99.993 0.007

104 1.0 99.985 0.015

102 10.0 99.910 0.091

101 33.3 99.728 0.272

100 100.0 99.154 0.846

aCorresponding to r=104.
bGaussian region.
cLeptokurtotic region.
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Ar�V�2� =
1

r − 1�
n=1

r

�En − Ar�Etot��2. �56�

In a similar manner to the total energy estimate it is often
assumed �whether explicitly or implicitly� that the CLT char-
acterizes the random error in this estimate.

The PDF of this estimate of the residual variance is of
interest in its own right, as for standard sampling it provides
the confidence interval for the total energy estimate �via the
valid CLT assumption for the total energy�. More impor-
tantly, the residual variance is often the quantity that is mini-
mized when optimizing trial wave functions, hence the sta-
tistics of errors in its estimate may well decide the success or
failure of an attempt to optimize a candidate wave function.

In order to express the sum of squares of random vari-
ables in Eq. �56� as a sum of random variables, Un=Xn

2−1 is
defined, whose PDF can be expressed in terms of the seed
distribution p�x� as

pv�u� =
1

2
u + 1
1/2 �p�x = �u + 1� + p�x = − �u + 1��

�57�

for u
−1, and 0 otherwise. Due to the x−4 asymptotic be-
havior of the seed distribution, this PDF exhibits the
asymptotic behavior

lim
u→�

pv�u� � 1/u5/2, �58�

and the second moment of pv�u� is not defined, hence none
of the CLT theorems are valid.

From this it follows that the random error in the estimated
residual variance does not approach a normal distribution,
confidence intervals are not provided by the error function,
and the sample variance does not provide a measure of the
random error. This is the case despite the fact that the sample
variance will be finite for any number of samples, as it will
approach infinity as the number of samples is increased.
However, the strong law of large numbers �LLN� is still
valid, as pv�u� does possess a finite mean �5�.

A general form of the distribution of the random error is
derived in what follows, providing a limit theorem that takes
the place of the CLT. The existence of alternative limit theo-
rems �that result in “infinitely divisible forms” for the distri-
bution, also known as “Levy skew alpha-stable distributions”
or “stable distributions”� that are valid for classes of PDF
functions is well known in statistics �5,20� with the CLT and
resulting normal distribution being the most familiar ex-
ample.

The notation is simplified by defining two supplementary
random variables. A sum of r IID random variables with
distribution pv�u� is denoted Sr, and a normalized sum is
denoted V, such that

V =
U1 + ¯ + Ur

r2/3 =
Sr

r2/3 . �59�

With these definitions the transformation from V to Ar�V�2�
is given by

Ar�V�2� = 
 V

r1/3 + 1��2. �60�

Following the same approach as for the total energy, the
PDF of Sr is given by

Pr�sr� = pv�ur� � Pr−1�sr−1� , �61�

and the characteristic functions of U and Sr are related by

Pr�k� = er ln pv�k�. �62�

In order to continue, a series expansion of the logarithm of
pv�k� is required. For the total energy estimate the analog of
this was obtained by closed contour integration in the com-
plex plane, however this is not appropriate for pv�k� due to
the presence of fractional powers. A different route consists
of reintroducing the original variable x into the Fourier trans-
form, giving

pv�k�e−ik = �
−�

�

p�x�e−ikx2
dx , �63�

which may be performed as a bilateral Laplace transform
�21� to give the general series expansion

ln pv�k� = − �3
4

3��
�1 − i sgn�k��
k
3/2 + �4k2 + O�
k
5/2� ,

�64�

where no linear term appears as the mean of pv�u� is zero
�due to the offset in the definition of Un�. Note the disconti-
nuity introduced by a sign function sgn�k�, that is equal to +1
for positive k, −1 for negative k, and whose definition is
irrelevant at k=0.

This provides the required expression for Pr�k�,

Pr�k� = exp�− r�3
4

3��
�1 − i sgn�k��
k
3/2 + r�4k2

+ O�r
k
5/2�� . �65�

Changing variables to w=r2/3k and v=sr /r2/3, and perform-
ing the inverse Fourier transform results in the PDF of the
normalized sum V,

Pr�v� =
1

2�
�

−�

�

exp�iwv − �3
4

3��
�1 − i sgn�w��
w
3/2�

� exp� �4

r1/3w2 + O
w5/2

r2/3 ��dw . �66�

The lowest-order terms are independent of r due to the nor-
malization chosen for V. Expanding the second exponential
as a power series for large r gives

Pr�v� = �0�v� +
�4

r1/3�2�v� + ¯ , �67�

where

HEAVY-TAILED RANDOM ERROR IN QUANTUM MONTE CARLO PHYSICAL REVIEW E 77, 016703 �2008�

016703-11



�q�v� =
1

2�
�

−�

�


w
q exp�iwv − �3
4

3��
�1 − i sgn�w��

�
w
3/2�dw , �68�

and

�q�v� =
1

2�
�

−�

�

�iw�q exp�iwv − �3
4

3��
�1 − i sgn�w��

�
w
3/2�dw , �69�

and differentiation with respect to v iteratively provides
terms of higher q from �0 and �0. The lowest-order term in
this expansion provides the distribution of the estimate in the
large r limit, and is a particular case of the class of stable
distributions �20�.

A transformation of the characteristic function to an ex-
plicit representation of �0�v� is not available in the literature,
and is a nontrivial integral. Although a strictly closed form
representation is not available, here the integral is performed
analytically to provide the resulting distribution in a concise
form employing Bessel functions. The derivation is given in
the Appendix, and provides the estimate of the residual vari-
ance Ar�V�2� as a random variable with a PDF given by

lim
r→�

Pr�x� =
�3

�

1

2�
� x − �2

2�
�2

exp
� x − �2

2�
�3��− sgn�x

− �2�K1/3
� x − �2

2�
�3� + K2/3
� x − �2

2�
�3�� ,

�70�

where x is a supplementary variable integrated over to obtain
probabilities, �2 is the variance of the underlying seed dis-
tribution of local energies, and � is the scale parameter for
the distribution defined by

� = �6�3
2

�r
�1/3

�2. �71�

This distribution of unbiased estimates of the residual vari-
ance in standard sampling takes the place of the normal dis-
tribution that occurs for a valid CLT.

The parameter �3 is the same as that in the analysis of the
total energy estimate, and is a measure of the magnitude of
the leptokurtotic tails in the seed distribution. The “width” �
is not related to the variance of the distribution itself—the
mean and variance of Pr�x� are �2 and �, respectively. Al-
though this width parameter approaches zero for increasing
r, it does so as r−1/3 �the analogous width parameter for the
CLT decreases as r−1/2�. The asymptotic behavior of Pr�x� is
given by

lim
x→�

Pr�x� =
1

2�6�

1

2�

2�

x
�5/2

, �72�

showing that the leptokurtotic behavior of the PDF for U
=X2−1 is preserved. This is the dominant part of the

asymptotic behavior even for finite r, as it can easily be
shown that the additional terms decay faster than x−5/2.

Equation �70� is a general result for the statistics of esti-
mates of the residual variance for standard sampling in VMC
�it is also a general result for a sum of IID random variables
whose PDF possesses a one sided x−5/2 asymptote�. General
conclusions may be drawn from this distribution. The most
important result is that the CLT does not apply, but the LLN
does. It is apparent that although confidence intervals exist
for an estimate of the residual variance, they are completely
unrelated to a sample variance, and confidence intervals ob-
tained using the error function and sample variance are un-
related to the distribution of errors even though they could be
calculated.

Since no unbiased estimate exists for �3 �or ��, only the
biased estimates considered earlier can be used to construct
confidence intervals. In addition, closer examination of the
form of the distribution reveals that the mean may be outside
of the confidence interval, since the mode and median do not
coincide. Another observation is that, with increasing confi-
dence, a lower bound of the confidence interval decreases
slowly �slower than the CLT would predict�, but the upper
bound rapidly becomes far larger than that predicted by the
CLT.

Figure 5 shows the general form of the distribution in the
limit of large r, together with a kernel estimate of the same
distribution constructed from 104 residual variance estimates,
each from r=103 local energy samples for the all-electron
carbon atom considered for total energy estimates. For com-
parison, a normal distribution resulting from blindly apply-
ing the CLT using the mean and variance of the sampled data
is also shown. It is clear that the distribution of estimated
residual variance is far from normal, and it should be remem-
bered that the width of the normal distribution �in units of
2�� shown in the figure diverges with an increasing number
of residual variance estimates.

Observing that the limiting distribution describes the car-
bon data well, and that r=103 is a relatively small number of
sample points, suggests that the large r limit has been

(v − σ2)/(2γ)

2γ
̂ P
r
(v

)

0 10 20 30 40
10−6

10−3

100

FIG. 5. Probability density function for the random error in the
estimated residual variance. Results shown are for a kernel estimate
of the PDF resulting from 104 estimates with r=103 for each esti-
mate �black�. Gray lines show the predicted large r limit �a stable
PDF�. For comparison, a normal distribution with a mean and vari-
ance taken to be the sample mean and variance of the data is also
shown �dotted line�.
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reached in this case. For less accurate trial wave functions
this may not be the case. Since the deviation from the large r
limit has a magnitude proportional to r−1/3 this should be
justified on a case by case basis.

The significance of the deviation from the normal distri-
bution may best be estimated by considering the predicted
number of estimates in the interval �v−�2� /2��2, for 104

estimates. Incorrectly assuming the validity of the CLT pre-
dicts 0.0 outliers, Eq. �70� �with �3=1.0� predicts �266 out-
liers, whereas the numerical data provides 198 estimates in
this interval. Confidence intervals could be defined using Eq.
�70� and estimates of the parameter �3. This is not carried out
here. A variety of methods for the estimation of parameters
such as �3 do exist, but are inherently biased �24�.

It appears that the most important non-Gaussian features
of the distribution of sample residual variance estimates are
that ��r−1/3, and that outliers are likely. Results for the es-
timate of both the total energy and the residual variance may
be summarized in the statement that the standard sampling
method does not sample the E−4 tails sufficiently to provide a
statistically accurate measure of their contribution to esti-
mates. Were these leptokurtotic tails to be absent, none of the
deficiencies described above would be present—all moments
of the local energy distribution would exist, leptokurtotic
tails could not occur, and unbiased estimates that include
finite sample size effects would be readily available.

These results do not invalidate the current use of standard
sampling for total energy or variance estimates, since these
estimates still converge to the expectation values for increas-
ing r. The difficulty is that estimates of the random error in
these quantities are not available. It may be that assuming “
r is large enough” provides practical estimates of the error in
the total energies estimates, but whether this is the case de-
pends on more than the sample moments. Errors in the re-
sidual variance estimates are unavoidably not normal, even
in the large r limit, and the probability of outliers occurring
does not fall off exponentially with r, but as a power law.

Estimated total energies and residual variance were cho-
sen for consideration because of the central role played by
these quantities in QMC methods. In the next section the
results of a similar analysis of the standard sampling esti-
mates for other physical quantities is described, to show that
the emergence of a non-normal distribution of errors with
power law tails is not limited to estimates of the residual
variance.

IV. OTHER ESTIMATES

The analysis given in the preceding sections can be ap-
plied to general estimates in standard sampling VMC to ob-
tain the distribution of the accompanying random error. Ide-
ally, it would be hoped that accurate confidence limits would
be available as a result of the CLT being valid in its strongest
form.

In this section estimates of the expectation value of sev-
eral operators are considered, and these take the general form

Ar�X� =
1

r
�
n=1

r

xL�Rn� , �73�

a mean of a local quantity xL. Singularities in xL can be
classified by location as type 1, 2, or 3 in the same manner as

for the local energy singularities, but the order of the singu-
larities is generally different. The distribution of the esti-
mates themselves are then obtained via the same surface in-
tegration and generalized central limit theorem approach
used for the local energy.

A. Kinetic energy and potential energy

The most straightforward estimate for the electronic ki-
netic energy is provided by the kinetic part of the local en-
ergy,

xL�Rn� = �−
1

2

�R
2 �

�
�

Rn

. �74�

This possesses type 1 and 2 singularities if the Kato cusp
conditions are satisfied, and type 3 singularities unless �R

2 �
=0 at the nodal surface. These singularities result in a normal
distribution of estimates in the large r limit, with “lopsided”
x−4 tails in the PDF that decay with increasing r. However,
the presence of type 1 and 2 singularities is expected to result
in larger x−4 tails in the PDF of the kinetic energy estimate
than for the total energy estimate.

An alternative estimator for the kinetic energy is provided
via Green’s first theorem, and takes the form of the sample
average of the random variable

xL�Rn� =
1

2��
i

�i��i�

�2 �
Rn

, �75�

where �i denotes the gradient with respect to the coordinate
of electron i. Type 1 and 2 singularities are not present since
the gradient of the wave function possesses no singularities.
Type 3 singularities arise from the quadratic behavior of �2

about the nodal surface, resulting in a positive x−5/2 tail in the
PDF of the sampled random variable and no CLT. The re-
sulting PDF of kinetic energy estimates is the same one sided
stable PDF as for the residual variance estimates, with infi-
nite variance and a x−5/2 power law tail.

Two potential energy estimates follow naturally from the
two kinetic energy estimates and the total energy estimate.
One of these possesses type 1 and 2 singularities, and results
in a weakly valid CLT with strong x−4 tails. The second
possesses type 3 singularities only, which result in no valid
CLT, and the same one sided stable PDF as the residual
variance estimate, with infinite variance and a x−5/2 power
law tail.

B. Nonlocal pseudopotentials

For systems described using nonlocal pseudopotentials,
the local energy estimate takes the form

xL�Rn� = �TL + Vee + �−1V̂��Rn
, �76�

where V̂ is the sum of one-body nonlocal operators that make
up the pseudopotential. Provided the pseudopotential is not
singular these do not possess type 1 singularities, and type 2
singularities may be prevented using the usual Kato cusp
conditions. However, strong type 3 singularities can be ex-
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pected at the nodal surface, resulting in x−4 tails in the
sample PDF. Hence, for nonlocal pseudopotentials, the CLT
is expected to be weakly valid, with slowly decaying x−4 tails
that are larger than for the local potential case.

C. Mass polarization and relativistic terms

Corrections to the total energy due to finite nucleus mass
and some relativistic effects may be implemented in VMC
via perturbation theory, and the required estimates are avail-
able in the literature �25,26�. These generally possess singu-
larities of all three types, and result in x−5/2 tails in the PDF
of the sampled local variable. As a direct consequence of
these tails the CLT is not valid and the large sample size limit
of the distribution of estimates is not normal, but a two sided
variant of the stable PDF found for the residual variance
estimate, that is, with a finite mean, an infinite variance, and
two sided x−5/2 power law tails.

D. Atomic force estimates

For estimates of atomic forces the “local Hellmann-
Feynman force” is commonly taken to possess the form �27�

xL�Rn� = − ��X��−1V̂���Rn
, �77�

where �X is the gradient with respect to the nucleus coordi-
nate�s� X, evaluated at the nucleus positions of interest, and

V̂ is the sum of one-body potential energy operators due to
each atomic nucleus in the system. �Both the operator and
the trial wave function are functions of the nucleus position.�

For the special case where V̂ is a local potential the wave
function cancels, and the gradient operator acts on the mul-
tiplicative potential only. For smooth local potentials no sin-
gularities arise, and the CLT is valid for the resulting esti-
mate. For a Coulomb potential type 1 singularities arise, and
result in estimates whose distribution in the large sample size
limit is a two sided stable law of finite mean, infinite vari-
ance, and with x−5/2 power law tails. For smooth nonlocal
pseudopotentials type 3 singularities arise, and result in esti-
mates whose distribution in the large sample size limit is,
again, a two sided stable law with x−5/2 power law tails.

E. Linearized basis optimization

A wave-function optimization strategy has recently been
developed �28,29� that linearizes the influence of variational
parameters on the total energy by constructing a basis set
from derivatives of the trial wave function with respect to
parameters of the wave function �i. Applying the total en-
ergy variational principle results in a matrix diagonalization
problem, with matrix elements defined by integrals that are
estimated as means of the sample values

xL�Rn� = ��i

�

Â� j

�
�

Rn

, �78�

with �i the derivative of the trial wave function with respect

to parameters �i, except for �0=�. Â is either the identity or
the Hamiltonian operator.

Generally, the linear behavior of the wave function as the
nodal surface is crossed introduces singularities in the
sampled quantity, resulting in x−5/2 tails in the PDF. These
result in an invalid CLT, and the estimated matrix elements
have a PDF �in the large sample size limit� of the same form
as for the estimate of the residual variance—the one sided
stable distribution with infinite variance. Some exceptions
occur for particular matrix elements; for the Hamiltonian op-
erator the distribution of the estimate is weakly normal for
i=0, and for the identity operator the CLT is weakly valid for
i=0 or j=0, and the variance is zero for i= j=0.

Although this informs us of the distribution of each esti-
mated matrix element, it provides no direct information on
the correlation between elements, or of the distribution of the
lowest eigenvalue of the estimated matrix �30�. However, it
seems likely that the invalidity of the CLT makes a signifi-
cant contribution to the instabilities that must be carefully
controlled for an implementation of this optimization method
to be successful.

V. CONCLUSION

The sampling distribution for a local quantity can be sim-
plified by reducing the 3N-dimensional distribution to the
degrees of freedom of the local quantity that is sampled, with
derivable asymptotic behavior. Such an analysis has been
applied here to characterize the random error for the two
most important estimated quantities in variational QMC, the
total energy and the residual variance.

For estimates of the total energy within the standard sam-
pling implementation of VMC, the CLT is found to be valid
in its weakest form with the consequence that the influence
of finite sample size is not obvious and must be considered
on a case by case basis. Outliers have been found to be
significantly more likely than suggested by CLT confidence
limits. No rigorous bounds exist that provide limits to the
deviation from the CLT for finite r, and consequently confi-
dence intervals based on the CLT may be misleading. How-
ever, for the example case of an all-electron isolated carbon
atom and an accurate trial wave function the assumption of
large sample size appears to be useful.

The variance of the local energy has also been considered
in light of the primary role played by this and similar quan-
tities in wave-function optimization procedures. A statistical
variance of the local energy within standard sampling is
equivalent to the residual variance defined in terms of the
Hamiltonian and trial wave function themselves, and the sta-
tistics of the estimate of this quantity have been investigated.

For estimates of the variance within the standard sampling
implementation the CLT is found to be invalid. A more gen-
eral stable distribution and generalized central limit theorem
take the place of the normal distribution and CLT, and this
stable distribution is fundamentally different from the normal
distribution. It possesses tails that decay algebraically, and so
outliers are many orders of magnitude more likely than sug-
gested by the CLT. The width scale of this distribution falls
as r−1/3, significantly slower than the r−1/2 scaling that would
result from a valid CLT. The distribution is asymmetric, so
the mean and mode do not coincide. Only biased estimates of
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the parameters of this distribution �other than its mean� are
available, and confidence intervals based on the CLT are en-
tirely invalid.

In order to demonstrate that this is not a statistical issue
particular to estimating the residual variance, estimates of the
expectation values of several other operators have also been
considered. For most of these the CLT is found to be invalid,
with the same or a similar distribution of random error aris-
ing as for the residual sampling estimate—the stable distri-
bution with x−5/2 asymptotic tails and infinite variance.

Perhaps the most important consequence of these results
arises in the context of the minimization of the residual vari-
ance and related quantities carried out to optimize a trial
wave function. Many of the instabilities encountered in dif-
ferent optimization methods �15,16� may be due to the use of
estimates that are statistically faulty.

By shedding an assumption about the properties of QMC
estimates and replacing this with a derivation of the true
distribution of random errors, it has been shown that devia-
tions from the CLT are not trivial and can be expected to
have a significant influence on the accuracy and reliability of
estimated physical quantities and optimization strategies
within QMC. The analysis itself provides a new explicit �but
not rigorously closed� expression for a particular stable law
PDF, and a general approach to assessing the strengths and
failures of general sampling strategy or trial wave-function
combinations for estimating expectation values of physical
quantities in QMC.
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APPENDIX

Defining a3/2=
4�3

3��
gives �0 of Eq. �67� as

�0�v� =
1

2�
�

−�

�

exp�− a3/2�1 − i sgn�w��
w
3/2�eiwvdw .

�A1�

Partitioning the integral into the negative and positive
ranges gives

�0�v� = I1�v� + I2�v� , �A2�

with I1 and I2 integrals taken over 0�w�� and −� �w
�0, respectively. Substituting w=y2 results in

I1�v� =
1

2�
�

0

�

2y exp�ivy2 − a3/2�1 − i�y3�dy , �A3�

and, for I2, substituting w=−y2 results in

I2�v� =
1

2�
�

0

�

2y exp�− ivy2 − a3/2�1 + i�y3�dy = I1�v�*.

�A4�

These two identities provide

�0�v� = I1�v� + I1�v�*

=
1

�
Re��

0

�

2y exp�ivy2 − a3/2�1 − i�y3�dy� . �A5�

The next step is to obtain the real part of the integral in this
expression. This can be achieved by converting this integral
into an ODE for �0�v�, and then seeking the solutions that
are real and normalized.

First define Gn by

Gn�v� = �
0

�

2yn exp�ivy2 − a3/2�1 − i�y3�dy , �A6�

so that

�0�v� =
1

�
Re�G1�v�� . �A7�

Equations that relate Gn for different indices may be derived.
The first of these is obtained by integrating the derivative of
the exponential function in the integrand to give

�
0

�

�2ivy − 3a3/2�1 − i�y2�exp�ivy2 − a3/2�1 − i�y3�dy

= 
exp�ivy2 − a3/2�1 − i�y3�
v=0
v=�. �A8�

In addition, integrating Gn by parts provides the relation

�n + 1�Gn = − 2ivGn+2 + 3a3/2�1 − i�Gn+3. �A9�

These two expressions provide the equations

− 1 = ivG1 −
3

2
a3/2�1 − i�G2, �A10�

G1 = − ivG3 −
3

2
a3/2�1 − i�G4, �A11�

G2 = −
2

3
ivG4 + a3/2�1 − i�G5, �A12�

where the first arises from evaluating the limits in Eq. �A8�
explicitly and expressing the left-hand side in terms of G1
and G2 and the following two arise from Eq. �A9� for n
=1,2.

Combining these equations to remove G2 and G4, and

noting that
dG1

dv = iG3�v� and
d2G1

dv2 =−G5�v� provides

9a3G1� − 2v2G1� − 5vG1 = − 3i . �A13�

Making the substitutions

G1�v� = v2e�v/3a�3
g�v� , �A14�

and

x = 
 v
3a
�3

, �A15�

further simplifies this ODE, and results in the inhomoge-
neous ODE
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x2g� + 2xg� − 
x2 + x −
2

9
�g = −

1

27a3 ie−x. �A16�

Only the real solutions of this equation are required, hence
only the homogeneous ODE

x2g� + 2xg� − 
x2 + x −
2

9
�g = 0 �A17�

need be considered. The required solution is finite for x
→ ±� and continuous at x=0, and is a sum of two modified
Bessel functions of the second kind,

g�x� = A�− sgn�x�K1/3�
x
� + K2/3�
x
�� , �A18�

with A an undefined constant.

Requiring Eq. �A10� to be true for v=0 provides A, and
transforming back to v provides the final result

�0�v� =
�3

�

v2

�3a�3e�v/�3a��3�− sgn�v�K1/3
� v
3a
�3�

+ K2/3
� v
3a
�3�� . �A19�

The transformation between v and a more general variable is
described in the main text.

This provides an explicit form for the PDF of the stable
distribution S�3 /2,−1,� ,� ;1� �using the notation of Nolan
�24��—Eq. �A19� is for �� ,��= �a ,0� and the general form is
trivially related to this by rescaling and translation.
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wave function and Hamiltonian, and no integrals are required
explicitly.

�32� Taking a general smooth wave function and applying an ap-
propriate cusp correction results in a new wave function � that
satisfies the Kato cusp condition. This may be expanded as a
power series in the electron-nucleus vector r1: ��r1�=a
+b ·r1−aZr1+O�r1

2�. It is straightforward to show that EL

=�−1Ĥ� possesses no singularity at r1=0, but is discontinuous
unless b=0. There are many examples of wave functions for
which b=0, such as the exact wave function, or a Slater deter-
minant of exact Hartree-Fock orbitals, but this is not a conse-
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quence of satisfying the Kato cusp condition. Note that this
analysis is only valid when � is finite at the nucleus. If � is
zero at the nucleus, then the absence of a singularity and con-
tinuity of the local energy at the nucleus require two new con-

ditions to be satisfied which replace the Kato cusp and b=0
conditions. These may easily be derived. Note that this analy-
sis does not imply any statement about the continuity of the
local energy as two or more electrons coalesce at a nucleus �7�.
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